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The absence of phase transitions in a one-dimensional model with long-range 
antiferromagnetic potential is established at low temperatures when the ground 
states have a rational density. A description of the set of all ground states and 
typical configurations is given. 
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1. I N T R O D U C T I O N  

We consider a classical lattice model of statistical mechanics on a one- 
dimensional lattice, the spin variable q~(x) at each point x taking the values 
0 and 1. The interaction is specified by means of the Hamiltonian 

I-I(~o(x))= y~ U(x-y)~o(x)~o(y)-~ y~ ~o(x) (1) 
x, yEZl ;x> y x~Z 1 

where # is the external field. The following conditions are imposed on the 
potential U(x): 

1. U ( x ) > 0  at x ~ Z  1, x > 0 .  

2. Zx~z~ U(x)< ~ .  
3. U ( x + y ) +  U ( x - y ) > 2 U ( x ) ;  x, y ~ Z  1, x > y .  
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4. The function U(x) can be extended to a twice continuously 
differentiable function such that U ( x ) ~ A x  -~, U ' ~ - A v x  ~-1, and 
U"(x) ~ AT(y + 1 )x  -~-2  at x ~ 0% where ~ > 1, and A is a strong positive 
constant. 

The first condition means that the model (1) is antiferromagnetic. The 
natural second condition is necessary for the existence of the thermo- 
dynamic limit. The third condition on the convexity of the interaction 
function U(x) is essential for all further evaluations. The fourth condition 
determines the character of the potential's decrease at infinity. 

The main purpose of the present paper is to investigate the structure 
of the set of all Gibbs states (1) of the model (1). 

The hypothesis on the uniqueness of the Gibbs states in the model (1) 
was stated by Sinai in 1983 (see ref. 2, Problem 1). 

It is well known that the condition Zx~zl,x>0 xU(x)< oo automati- 
cally implies the uniqueness of the Gibbs states. (3-5) Therefore, we 
investigate the problem of the phase transitions in the model (1) for 
potentials U(x) ~ Ax -~, where 7 = 1 + ~, 0 < c~ < 1. The ferromagnetic case 
[when the potential U(x) is negative] was considered by Dyson. (6'7) He 
considered a model with the following potential [the external field is 
absent, spin variable ~o(x) takes the values +1,  - 1 ] :  

1. U(x) < O. 

2. Zx~zl lU(x)l < oo. 

3. U(x + 1) > U(x). 

4. Zx~Z~x>olnln(x+4) - lx3U(x)  -~< oo. 

Note that all potentials decreasing as x -1-~,  O<c~< 1, certainly 
satisfy the above conditions. 

Dyson established that in the ferromagnetic case one can find/~1 such 
that if fl > / ~  then there exist at least two extremal Gibbs states P+ and P -  
corresponding to the ground states q~(x)= +1 and r - 1 .  This very 
profound result is connected with the following fact. Let us consider the 
boundary conditions q3(x)= 1, the segment I - -n ,  n], and the configuration 
~0 l(X) such that q)_1(x) = - 1  if x e  [ - n ,  n], and q ) l ( X )  = 1 if x e Z  1 -  
I - n ,  n]. Then the difference between the energies of the configurations 
q~ ~(x) and qS(x) is of order n t-~. In other words, in the one-dimensional 
case there arises an analog of the notion of the surface tension and this fact 
leads to the existence of two extremal Gibbs states, as could be anticipated. 

In the antiferromagnetic case we are faced with a quite different 
situation. It will be shown that at arbitrary fixed boundary conditions 
qS(x), x e Z  1 -  I - -n ,  n], a configuration cp(x), x e  l - -n ,  n], with maximal 
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weight (or with minimal energy) almost does not differ from the special 
ground state with the exception of some bounded zone and is stable in the 
sense of Peierls (see Lemma 5). This fact has a decisive significance in 
establishing all further results. 

A series of papers has been devoted to the investigation of the ground 
states of the model (i)/8-1~ 1 1 - 1 4 )  

Let us now briefly introduce necessary definitions and facts. Let #per 
denote the set of all periodic configurations. For  every ~0 ~ ~b per we define 
q-~y=x+l-vx+P q~(x)/p, where p is the period of q~. It is obvious that q does 
not depend on x. Therefore, the density of each periodic configuration is 

= q/p. It is more convenient to work with the reciprocal of the density, 
~/(~0(x)) = p/q, which represents the average distance between neighboring 
points at which q~(x)= 1. For  every configuration ~o E q~per we define the 
mean energy h(~0) as follows: 

1 x + p  
= -  Z q (x) U(z)  o(y + z) 

Py=x+l z > 0  

It is readily seen that this expression is independent of x. 
The special definition of the ground state was formulated in ref. 2. This 

definition does not coincide with the generally accepted one (1) and is useful 
for describing the phase diagram of the model (1) at zero temperature. 

Let p/q be a fixed positive rational number. 

Definition 1 .(2) A configuration ~0o(X ) e t~ per with q(~Oo(X ) = p/q) is 
called a special ground state if 

h(q~(x)) = inf h(~0) 
~p e ~Per,  r/(q~) = p/q 

The following proposition readily follows from the convexity of the 
potential U(x). 

Hubbard's C r i t e r i o n .  (2"8) Let ~0 e Cper and let ri(x; ~o) denote the 
distance between x e Z ~ and the ith particle on the right. If for each x and i 

[#/] ~< r~(x; q~)<. [in] + 1 

(the square brackets denote the integral part of the enclosed number) then 
~o is a special ground state. 

The existence of a configuration satisfying Hubbard's criterion (the 
special ground state) is proved in ref. 2. A remarkable short formula for 
the special ground states was given by S. Aubry (see ref. 13). Here we 
give the construction of the special ground state for each fixed rational 
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value of the density s:. (z) Special g round  states for irrational densities are 
investigated in refs. 13 and 14. 

Every rational number  p/q can be uniquely decomposed into a finite 
continued fraction. We write it as p/q = [-no, nl ..... ns], which means 

1 
n o +  1 

n l +  1 
n z +  - . - + - -  

r /s  

The ground  state for a configurat ion with s: = [-no, nl ..... ns] will be 
constructed by induction. 

1. ~C=no~>l, nl is an integer. It is then obvious that  a periodic 
configurat ion with equally distant x at which ~o(x)= 1 satisfies Hubbard ' s  
criterion, i.e., is a special g round  state. In this case ri(x; q~)= ino, i > 0 .  

2. ~: = n o + 1/nl, where n o and n 1 are integers, no ~> 1, n l > 1. Then the 
(non1 + 1)-periodic configurat ion 

0 ... 010 ... 01 ... 0 ... 01 

n o + 1 n o n o 

n l  -- 1 t i m e s  

also satisfies Hubbard ' s  criterion and is a special g round  state. 

3. • = [no, nl,..., ns], where no, nl,..., ns are integers, no, nl,..., ns >/1. 
For  s = 0 and s = 1 the required configurations are already constructed. 
Suppose we have already constructed a g round  state with s = m  and 
~:= [no, nl,...,nm]. Then the following configurat ion with s = m +  1 and 
K' = [ - n O ,  F/1 . . . . .  n m + l ]  is constructed:  

~O(no,..., nm+ 1) - -  ~0( / ' /0 , ' " ,  /~/m 1) ~O(no ..... nm)"" q~(no . . . . .  Plrn) 

nm + 1 times 

Here, 9(n0,..., nj), j =  m - 1 ,  m, m + 1, are the blocks from which the 
g round  states for ~ = [-no,..., nj] are obtained by periodic continuations. 

(2) It can be verified that the constructed configuration satisfies Hubbard ' s  
criterion and therefore is a special g round  state for tc = [no, n l ..... nm, nm+ 1]. 

Hubbard ' s  criterion allows us to extract an explicit expression for the 
mean energy of  a special g round  state(Z): 

h~= ~ ~ U(mi) ~U+ U(m,+ 1)(1 -zc ; )  (2) 
i = 1  

where mi = Fir/], ~ / =  1 + m / -  #/. 
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This formula shows that the function of mean energy is continuous on 
the set of all rationals and can be extended to a continuous function 
defined on the whole segment [0, + oe). 

T h e o r e m  1 .(2,10) 1. The function h~ is convex. 

2. In each rational point the function h~ has a left-hand derivative 
#~ and a right-hand derivative + + #~,  w i t h / ~  >/~- .  

3. The Lebesgue measure of the complement of the set U~ (#~-, / t+) 
in the real line R is zero. 

T h e o r e m  2. (u) Suppose that the value of the external field/~ of the 
model (1) belongs to the interval ( /~ , /~+)  for some number ~c = q/p. Then 
the special ground state of the model (1) is unique to within a translation. 

In this paper we establish the validity of Sinai's hypothesis at low 
temperatures almost (with respect to the Lebesgue measure) for each value 
of the external field. The main result of the present paper (and the solution 
of Problem 1 of ref. 2 almost for each value of the external field) is the 
following: 

T h e o r e m  3. Suppose that the value of the external field # of the 
model (1) belongs to the interval (/tK, #+ ) for some number ~ = q/p. 

Then the model (1) has a unique Gibbs state at all sufficiently small 
values of the temperature [/3-1 < const(/~, U(x))]. 

Suppose that the value of the external field # of the model (1) belongs 
to the interval ( ~ ,  kt +) for some number ~ = q/p. 

Let us consider an arbitrary configuration ~0(x). We say that ~0(V), 
V~ Z 1, is a preregular phase if there exists a special ground state ~0~ such 
that a restriction of this configuration on V coincides with (p(V). We say 
that q~(V'), V ' ~ Z  1, is a regular phase if there exists a preregular phase 
q)(V), V ~ Z  ~, such that both V'+dop and V ' - d o p  belong to V. 

Let us consider a set A = U~ Vi, where (p(Vi) is a regular phase and 
supp PB is a complement of A in Z ~. The connected components of 
supp PB defined in such a way are called supports of precontours and are 
denoted by supp PK. 

The value of the constant do will be defined later. 

D e f i n i t i o n . 2 .  The pair P K = ( s u p p  PK, ~0'(suppPK)) is called a 
precontour. The set of all precontours is called a preboundary PB of 
the configuration ~0'(x). Two precontours PK1 and PK2 are said to be 
connected if dist(supp PK1, supp PK2) < Nb. The set of precontours 
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(PKi; i e I) is called connected if for any two precontours PKp and PKq, 
p, q e I there exists a collection 

(PK(j,1) = PKp ..... PK(j,i),..., PKo,,-1), PKo,,) = PKq) 

( j , i )eI ,  i=l,. . . ,n 

such that any two precontours PK(j,o and PK(j,g+I), i = l , . . . , n - 1 ,  are 
connected. Let U 7= 1 PK~ be some maximal connected component of the 
preboundary PB. Suppose that suppPKi =  [a~,bi] and b ; < a i + l ,  
i = 1  ..... n - 1 .  

The pair K =  (supp K, q)'(supp PK)), where supp K =  [al ,  b,]  is 
called a contour. The set of all contours is called a boundary B of the 
configuration (p'(x). 

The value of the constant Nb will be defined later. 
Note that 

(n ) (  (n )) 
supp K =  i~1 supp PK i w [ a l ,  bn] - i~=l supp PK i 

= supp ~ K u  supp 2 K 

The sets supp I K and supp 2 K will be respectively called the essential 
and regular parts of the support supp K. 

Let the boundary conditions qS(x)= [~o(x), x ~ ( - o e , - V - 1 ] w  
I V + l ,  oo)] be fixed. A set of all configurations q0(x), x s [ - V ,  V], we 
denote by qs(V). 

It is obvious that for each contour K such that supp K e [ -  V+ (do + 1 )p, 
V - ( d o +  1)p] there exists a configuration O x ( [ - V ,  V]) such that the 
boundary of the configuration ~ ( [ - V ,  V]) includes the contour K only: 

PB(OK([-- V, V]))=  K (3) 

This means that the configuration O K ( I - V ,  V]) contains one contour 
K and two regular phases 01(x) and 02(x). It is obvious that there exist 
unique special ground states ~01~(x) and ~0~(x) such that restrictions of the 
configurations (ply(x) and ~0~(x) on the supports of the regular phases Ol(x) 
and O2(x) respectively coincide with the Ol(x) and O2(x). 

Def in i t i on  3. A contour K is called an interface contour if 
1 2 ~0 ~(x) ~ q~(x). 

Note that ~01~(x) can be obtained by some shifting of the configuration 
~o~. 

An interface contour will be denoted as IK. 
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Let K be the usual contour K and O x ( x ) = O ( [ - V , V ] )  if 
x e [ - V ,  V], and ~(x) if x e ( - o % -  V - 1 ]  w I V +  1, o0); let I K  be an 
interface contour and 0 IK(x )=O(  [ -  V, V]) if x e  I - V ,  V], and (~(x) if 
x �9 ( - o% - V -  1-1 w [ V+ 1, oe ); qS~(x) = q~no(X) if x �9 [ - V, V], and q3(x) 
if x � 9  ( - o e ,  - V - 1 ] w  [ V + I ,  oo); and q51~(x)= ~o~(x)if x � 9  I - V ,  V] and 
q3(x) if x � 9  - V -  1] w I V +  1, oo). 

The weights of the usual contour K and interface contour I K  will be 
calculated by the following formulas: 

7(K) = H(tp K(x)  ) -- H( dp~(x) ) (4) 

y(IK) = H(~g n~(X) ) - H(  (o'~(x) ) (5) 

For  establishing the uniqueness of the Gibbs states at low tem- 
peratures in the model (1) we use the following strategy. First, we prove 
that at low temperatures the typical configurations of the Gibbs state p1 
corresponding to the boundary conditions (pl(x) are small perturbations of 
the special ground states separated by a possibly finite number of inter- 
faces. Second, we consider an arbitrary configuration (p'(I), with I being an 
arbitrary segment, and a sufficiently large volume V, and establish that the 
dependence of the expression Pl(~0'(I)) : p2(q/( i))  on the boundary condi- 
tions @(x)  and ~p2(x) can be estimated through the sum of statistical 
weights of unlikely clusters connecting the segment I with the boundary. 
Finally, by using the Peierls estimation, we prove that the sum of weights 
of these clusters is a finite number, not depending on ~0'(I), V, q)~(x), and 
q)2(x). Thus, two arbitrary extreme Gibbs states are relatively continuous 
and hence coincide. 

The contents of this paper are as follows. In Sections 2-4 we assume 
that the density of the special ground state is l/no. In Section 2 the set of 
all ground states of the model (1) is studied. In Section 3, Gibbs states 
are investigated and the Peierls estimation is proved. In Section 4 the 
uniqueness of Gibbs states is established. In Section 5 all obtained results 
are generalized for all rational values of the density. 

2. G R O U N D  S T A T E S .  T H E  D E N S I T Y  K IS l / n  o 

In this section we continue to study the set of all ground states and 
give a description of this set for special values of the external field (when 
the density of the special ground state is 1/no). The general case will be 
considered in Section 4. 

Now we start to estimate the weight of a contour which contains only 
one precontour. 

822/72/3-4-11 
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Lemma 1. Suppose that the value of the external field # of the 
model (1) belongs to the interval (#~-, #~+ ) for some number x = q/p = 1/n o. 
Let q/(x) be an arbitrary finite perturbation of the special ground state 
q~n0(x) such that the boundary P B  of the configuration ~o'(x) includes a 
unique precontour PK. Then there exists a positive constant t depending 
only on the Hamiltonian (1) such that 

H(q) '(x)  ) - H(q),o(x) ) >~ t [supp PB[ (6) 

where Isupp PBI is the total area of the support of the boundary. 

Proof. 1. Suppose that Z . . . .  ppK((Dt(x)--q)no(X))-m-O. This means 
that a perturbation q~(x) is obtained by shifting of some particles only. 

If the length of the support of a contour is [suppK[ = L ,  then, 
according to the definition of a contour, the contour K contains at most 
do(L + no) : (do + 1) no number of blocks 

q~o = 0 ... 01 
no  

Then the convexity of U(x)  directly leads to the required estimation (6) 
with (2) 

t = to = ( U(no - 1 ) + U(no + 1 ) - 2 U(no) )  0 

0 = (L - dono) : 2L(do + 1) n o 
(7) 

2. Suppose that Z . . . .  ppK (~0'(X)-- ~0(X)) 50 .  Let the density of the 
configuration ~o'(x), x ~ s u p p  K, be x and the reciprocal of the density 
be q. Now we divide the proof of this section into six cases. 

Case 2a. n o + l <~ q. 

Case 2b. no+ l - e < q < n o +  l. 

Case 2c. n o < r / ~ < n o + l - e .  

Case 2d. q <~ n o - 1 .  

Case 2e. n o -  l < rl < n o -  l + & 

Case 2 f  n o -  l + 6 <.. rl < no. 

The constants e and 6 will be defined later. 

Case 2a. no+l~<t/ .  The density of the configuration q/(x) is 
x = ~/- 1. Note that 



Absence of Phase Transitions in 1 D AF Models 579 

H(~, ' ( x ) )  - H(~Ono(X)) 

= E V ( x  - y ) ( ~ ' ( x )  ~o'(y)  - ~O.o(X) ~O.o(y)) 
x , y ~ Z t , x >  y ; x , y ~ s u p p  K 

+ E U ( x -  y )  
x, y ~ Z l , x  > y ; x  E supp  K, y 6 supp  K or  x ~ supp  K, y ~ supp  K 

• ( q ; ( x )  ~o'(y)  - ~Ono(X) ~O.o(y)) 

- # Z (~o'(x)  - q, oo(X)) 
x e Z l , x  ~ s u p p  K 

= A I + B I + C  1 (8) 

Ax + Ba/> A a 

+ Z U ( x -  y) 
x, y c Z l ,  x > y ; x  e supp  K, y 6 supp  K o r  x 6 supp  K, y e supp  K 

• (q; '(x) q; ' (y)  - ~O.o(X) ~O~o(y)) 

> ~ 8 (x  - y)(,p~(x) q,,(y) - ~O.o(X) ~O,,o(y)) 
x, 3' ~ Z l , x  > y ; x ,  y ~ supp  K 

+ • U(x -- y) 
x, y ~ Z l , x  > y ; x  c supp  K , y  6 supp  K o r x 6  supp  K, y c supp  K 

• (~o~(x) q ,~ (y )  - ~Ono(X) q'no(y))  

= A'~ + B' 1 (9) 

Here the function ~o"(x) = ~%(x) if x r supp K and cp'(x) if x e supp K; 
and the function opt(x) is a special ground state with the density ~c = r/ 1. 

The first inequality is valid due to the following fact: 
Let cp,,0(x), x e IN, oo ], and ~%, x �9 IN, ~ ], be restrictions of special 

ground states with the densities no I and ~, respectively, on an arbitrary 
segment IN, oo], N > 0  (q>no).  Then 

U(x) (  ~.o(X) - ~ ( x )  ) > o 
. v ~ Z l ; x ~ >  N 

The last inequality shows that the "influence" of the boundary 
conditions ~o~0(x ) is stronger than the "influence" of the boundary 
conditions ~p.(x). 

The validity of the second inequality is a direct implication of the 
convexity of U(x). ~21 

Note that 

C1 = p  

= #  

E 
x ~ Z l , x ~ s u p p  K 

E 
x ~ Z I , x  E supp  K 

(~o'(x) - ~O,,o(X)) 

( ~o.(x) - (p.,o(X) ) = c' ,  
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Finally 

A 1 + B  1 +C~ ~>A~ +B~ +C~ 

= 2 
x ,  y ~ Z t ,  x > y ; x  o r  y E s u p p  K 

--/z 

V(x- y)(~o.(x) ~dY!-  ~~ ~~ 

(~o,(x) - (p.o(x)) = Q (10) 
x e  Z l ,  x c  s u p p  K 

By using the definition of the mean energy we get (~c=t/-1, 

~co=n o '  =q/p)  

Q = (h~ - h~o ) Isupp KI - p(~c - Xo) [supp K[ 

= (h~ - h~o - #0r - too)) Isupp K[ (11) 

Let us consider the expression h ~ - h ~ o - p ( ~ C - K o ) .  According to 
Theorem 2, the function h~ is convex and has a left-hand derivative #s  at 
the point ~c. Therefore, 

(12) 

The last inequality is valid due to the assumption # e (#s #+)  (note 
that x - ~ o  is negative and less than one). Finally, the formulas (8)-(10) 
lead to the required estimation with 

t = t ,  = ~ ( ~ : o  - ~ )  - ( G ~ -  h ~ )  

Therefore, taking into account the condition n o + 1 ~< r/, we see that in 
Case 2a the required estimation (6) holds at 

t = t l =  rain t~=p~(~Co-(~Col+l)-l)-(h~o-h(~ol+l)1) (13) 
n 0 +  1 ~<r/ 

The proof of Case 2a is completed. 

Cose 2b. n 0 + l - e < ~ / < n  o + l .  The density of the configuration 
qY(x) is ~:=tt -1. If n0+ 1 ~<t/ (Case 2a), then [see (8)-(10)] 

H(ep'(x) ) - H(~O,,o(X) ) >>. Q 

= (h~ -h~o -#(~c - Ko)) Isupp gl >~ t2 Isupp K[ 

For  a function of mean energy h~ we have an explicit expression which 
shows that hE is continuous. Therefore the function h ~ -  h~o-/~(~c- ~Co) is 
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H(cp'(x)) - H(~Go(X)) = A~ + B~ + C1 

A1 + B 1  + C 1  = (A1 + B 1 - A ]  - B ' I ) + A ]  +B ' I  + C'1 

A'I + B] + C'~ 

cont inuous  part icular ly at the point  ( X o l +  1 ) - l .  Then there exists el > 0 
such that  for all x: I x -  (Ko 1 + 1) ~1 < e l  

(h~ - h ~ 0 - # ( x  - Xo)) ]supp KI ~> t2/2 Isupp K[ (14) 

Finally, e = e~, t 2 = td2. 
The proof  of  Case 2b is completed.  

Case 2c. no < t/~< n o + 1 - ~. The  density of the configurat ion ~o'(x) 
is x =  q 1. Similarly to Case 2a, we get [-see (8 ) - (10) ]  

(15) 

(16) 

= Z v ( x -  y)(~o,(x) ~o,(y) - ~o.0(x) ~o.0(y)) 
x ,  y ~ Z 1, x > y ; x  o r  y E s u p p  K 

- Z ( ~ p , ( x ) -  q~.0(x)) = Q (17) 
x E Z l , x  E s u p p  K 

By using the definition of the mean  energy we get ( x = q - m ,  Xo = 
no I =q/p) 

Q = (h~ - h~0 ) Isupp KI - #(to - ~r tsupp Kt 

= (h~ - h~0 -  tt(~c - Xo) ) Isupp KI (18) 

Let us consider the expression h K - h ~ o - # ( ~ - K o ) .  According to 
T heo rem 2, the function h~ is convex and has a r ight-hand derivative #+  
at the point  x. Therefore 

hK --  h~ 0/> ~ +  (~: - ~c0) > /~(~:  - ~Co) (19) 

The last inequali ty is valid due to the assumpt ion  # (#~,  #~ ). 
No te  that  in Case 2c the inequali ty (13) does not  give us the required 

es t imat ion (6) because 

rain (h~ - h~0 - #(~: - ~:o)) = 0 
n o < r l < ~ n o +  l - -  ~ 

Let us consider the expression (A~ + B 1 - A ~ -  B'I). 
If  the length of the suppor t  of a p recon tour  is I supp PKI = L, then 

according to the definition of a precontour ,  the p recon tour  PK contains at 
mos t  do(L + no) : (do + 1) no n u m b e r  of  blocks 

r = 0 ... O1 
nO 



582 Kerimov 

Then the convexity of U(x) directly leads to the estimation 

A 2 + B 2 - A ~ - B ~ >  t~O [supp K[ 

where 

(20) 

t, = 1/2(1 + no - q ) (U(no-  1) + U(no + 1) - 2U(no)) 
(21) 

0 = (L - dono) : 2L(do + 1 ) no 

Finally, the formulas (15)-(20) lead to the inequality (6) with t = t~. 
Therefore, taking into account the condition no < t/~< n o + 1 - e, we see 

that in Case 2c the required estimation (6) holds at 

t =  t3 = rain 1/2(1 + n o - q ) ( U ( n  o -  1)+  U(no+ 1)-2U(no))O 
rt ~ (n0,n0 + 1 e ]  

= 1/2(U(no-  1 ) - 2 U ( n o ) +  U(no + 1)) cO (22) 

Case 2d. t /~<no-1.  The density of the configuration q)'(x) is 
x =  t/-1. Similarly to Case 2a, we get [-see formula (8)] 

H ( q / ( x ) ) -  H(q~,o(X)) = A~ + B1 + C1 (23) 

AI+B1/>A1 

+ E U(x- y) 
x, y e Z 1, x > y ; x  ~ supp  K, y q~ supp  K or  x q~ supp  K, y c supp  K 

• (q ; ' (x )  ~o"(y) - ~O.o(X) ~O.o(y)) 

>- Z U(x- y) 
x, y e Z 1, x > y ;  x,  y E supp  K 

x (~0,(x) q , , (y )  - ~O.o(X) ~Ooo(y)) 

+ Z u ( z -  y) 
x, y E z l , x  > y ; x  ~ supp  K, y ~ supp  K or  x ~ supp  K, y E supp  K 

x (q~"(x) q~"(y)  - ~O.o(X) ~0.o(y)) 

= A] + B' 1 (24) 

Here the function q~"(x) = 0 if x r supp K, and ~o'(x) if x ~ supp K and 
the function q~"(x) = 0 if x r supp K, and q),(x) if x e supp K. 

The obvious first inequality shows that the "influence" of the 
boundary conditions ~on0(x ) is stronger than the "influence" of the empty 
boundary conditions. 

The validity of the second inequality is a direct implication of the 
convexity of U ( x ) .  (2) 
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Note that 

Finally 

c , = ~  Y (~o'(x)- ~O.o(X)) 
x ~  Z l , x ~  s u p p  K 

= ~ y~ ( ~ o " ( x )  - q~ .o(X))  = c '1  
x ~ Z l , x ~ s u p p  K 

A~ +BI  +C~>A'~+B'~ +C~ 

: ~ U ( x -  y) 
x ,  y E Z l , x  > y ; x  or  y ~ s u p p  K 

x (~o"(x) ~o"(y) - ~O.o(X) ~on0(y)) 

- /~ ~ (~o"(x) - ~G0(x)) = Q (25) 
x ~ Z l , x  6: s u p p  K 

Now, as in Case 2a, we have to investigate the expression Q. 
But in this case the situation is slightly more difficult (not symmetric 

with Case 2a). The fact is that in Case 2d, instead of the desired inequality 
(6) with the function (p,(x) we have the inequality (6) with the function 
qo"'(x). Below (Lemma 2) we shall prove that the difference between these 
two functions is not so significant. 

We introduce the following function: 

h~ = ~ E U(x-  y) ~.(x) ~o.(y) 
x ,  y E Z l , x >  y ; x , y +  [ - - L , L ]  

k e m m a  2. The function h~ is continuous and uniformly converges 
to the function hE when L tends to infinity. 

The proof of Lemma 2 wilt be given later. 
By using the definition of the h~ we get 

Q = (h~ - h~0 ) Isupp K] -/t(~c - SCo) lsupp KI 
L = (h~ - h~o- #(s: - t%)) Isupp K[ (26) 

Now let us consider the expression h ~ -  h~ o - # ( ~ c -  ~o). According to 
Theorem 2, the function h~ is convex and has a right-hand derivative/~[ 
at the point ~c. Therefore 

h~ - h~o ~>/~+ (~c = ~Co) >//x0c - ~Co) (27) 

The last inequality is valid due to the assumption # E (/2K-, #~+) (note 
that ~c-~c o is positive and greater than unity). 
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Let 

~1 = #~(~Co - K) - (h~o - h ~ )  ( 2 8 )  

According to Lemma 2, there exists L1 such that if L > L1, then 

h ~ - h ~ > s l  

Finally, the formulas (23)-(28) lead to the required estimation with 

t = t~ = (#~(tc o - to) - (h~o - h~))/2 

Therefore, taking into account the condition r/~< n o - 1, we see that in 
Case 2d the required estimation holds at 

t = t 4 =  min t , = ( h % ~ _ l ) l - h ~ 0 - # ( ( ~ C o i - 1 ) - 1 - ~ C o ) ) / 2  
q <~ n 0 1 

The proof of Case 2d is completed. 

(29) 

Case  2e .  n o -  1 < r 1 < n o -  1 + 6. The density of the configuration 
~o'(x) is ~c=q -1. If no+ 1 ~<q (Case 2d), then [see (25)-(29)] 

H(~p'(x)  ) - H(cP.o(X) ) >t Q 

= (h~ - h~0 - #(~c - tr ) Isupp KI 

/> t4 Isupp K[ 

According to Lemma 2, the truncated function of the mean energy h~ 
is continuous. Therefore, the function h ~ -  h,~0- #(~c- ~0) is continuous in 
particular at the point (~o 1 -  1) -1. Then there exists 61 > 0  such that for 
all ~c: i~c-(~Co 1 -  1)-11 <61 

(h~ - h~0 - #(• - ~o)) Isupp KI/>~3/2 Isupp KI (30) 

Finally, 6 = 61, t5 = t4/2. 
The proof of Case 2e is completed. 

Case  2f.  n o -  1 + 6 <~ ~ < no. The density of the configuration q~'(x) 
is t c=q  -1. Similarly to Case 2d, we get [see (15)-(17)] 

H(cp ' (x) )  - H(~P.o(X))= A, + B1 + C1 (31) 

A1 + BI + C1 = (A1 + B, - A'I - B'I) + A'I+ B'I+ C'1 (32) 

L e m m a  3. 

A'I + B i  +C'l  i>0 (33) 
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The proof of Lemma 3 will be given later. 
Let us consider the expression (A 1 q- B 1 - A' 1 - B'I). 
If the length of the support of a contour is ] s u p p K l = L ,  then, 

according to the definition of a contour, the contour K contains at most 
do(L + no) : (do + 1 ) n o number of blocks 

~Po = 0 ... 01 
no 

Then the convexity of U(x) ~2) directly yields the estimation 

where 

A I + B 1 - A ' I - B ' I > ~ t n O  Isupp KI 

t. = 1/2(1 + r / -  no) (U(no -- 1 ) +  U(no + 1 ) - 2  U(no))0 

0 = (L  - dono) : 2L(do + 1 ) no 

(34) 

(35) 

Finally, the formulas (31)-(35) yield the inequality (6) with t = t,. 
Therefore, taking into account the condition no - 1 + 6 ~< t /< no, we 

see that in Case 2f the required estimation (6) holds at 

t=- t6 = min (1 + q - n o ) ( U ( n  o - 1)+  U(no+ 1 ) - 2 U ( n o ) ) O  
rl~ (no,no+ 1 --&] 

= 1/2(U(n o - 1) + U(no + 1 ) -  2U(no) ) 60 (36) 

For  the completing of the proof of Lemma 1 we only have to choose 

t ' =  min ti (37) 
i = 0 - 6  

So the inequality (6) holds at t = t' if dono > L1 (see Definition 2 and 
the choosing of the L1 in the Case 2d). 

Lemma 1 is proved. 

Note that (see the definition of 0) 

t = t(do) ~ const/dono (38) 

Remark 1. We could prove the statement of Case2a by using 
Lemma 2 (as in Case 2d), but in Case 2a we dispensed with Lemma 2 by 
using a trick. 

P r o o f  o f  L o m m a  2. For each given e we have to find L~ such that if 
L > L~, then 

I h ~ - h L I < E  

822/72/3-4-12 
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1. Obviously, 
L L Ih~,,-h~l <<, lh~-h~,,I 

The function h~ is continuous. (2) Therefore the function h L is also 
continuous. 

2. The function h~ is continuous. Therefore for each given e/3 there 
exists 6 such that Ih~-h~, l  <e/2 if Is:-x'l <6. 

3. Let [h~-h~,,I <6  and x ' = q / p .  Let consider the restriction of 
the special ground state q~o on the segment [ - I p ,  lp], where I is some 
natural number. Obviously, for each given e/3 there exists l such that 

L ~/2 if L > lp. Ih~.,- h~,,[ < 

Now note that 

L L ~< e/3 + e/3 + e/3 I h~ -h~ l  <~ Ih~-h~,,I + Ih~,,-h2,,[ + Ih~,,-h~l =~ 

if L > Ip. 
Hence, Lemma 2 is proved. 

Proo f  o f  L e m m a 3 .  Let the configuration ~p(x) with a unique 
contour K be obtained from the special ground state with a density x by 
some finite perturbation, and let the configuration ~pM(x) be a periodic 
configuration with a period M, and with the unique contour K on the 
period [so the density of the configuration r is equal tO x'].  Then 

F(M) = ~ U(x - y)(q~M(x) ~oM(y) - ~Go(x) ~P,,o(Y)) 
x, y ~ Z l , x  > y ; x  or y ~ supp K 

- # ~ (q~M (x) - ~O,,o(X)) (39) 
x, y ~  Z l , x r  K 

U ( x -  y)(ep~,(x) q ~ , ( y ) -  (p,o(X) q~,,o(Y)) 
x, y e Z l , x >  y ; x o r y e [  M , M ]  

(40) 

/> 

- #  Y~ (~o~,(x)- ~o.o(x)) = QM 
x ~ Z t , x E  [-- M,M] 

By using the definition of the mean energy 
~c o = no  1 = q/p) 

we get 0r = r / ' - ' ,  

QM = ( h ~ , -  h~0) 2 M -  # ( ~ '  - ~ o )  2 M  = ( h E , -  h~ o - # ( s : '  - Xo))  2M 

Let us consider the expression h , ~ , - h , ~ o - # ( K ' - ~ o ) .  According to 
Theorem 2, the function h~ is convex and has a right-hand derivative #+ 
at the point x. Therefore, 

h~, - h~ o/> #+ (K' - ~o) >/#(~' - Xo) 
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The last inequality is valid due to the assumption # ~ (#2,  #~+ ). 
Therefore 

F(M)  ~> QM >~ 0 

Now note that 

Ai + Bi + Cl 

= Y U(x  - y ) ( ~ ( x )  ~ ( y )  - ~Ono(X) ~O.o(y)) 
x , y ~ Z l ,  x >  y ; x o r  y r  K 

- u y~ ( ~ o ( x )  - ~ . 0 ( x ) )  
x ,  y E Z 1, x ~ s u p p  K 

= l i m  F(M))O (41)  
m ~ c o  

Lemma 3 is proved. 

R e m a r k  2. Lemma 1 shows that a special ground state is a ground 
state. Below we shall prove that a special ground state is a stable (in the 
sense of Peierls) ground state. 

Now we define and investigate the notion of the interaction between 
contours. 

The contour model corresponding to the formulas (4) and (5) is an 
interacting contour model since the potential is long range. Below we 
improve the definition of a contour in order to estimate an interaction. 
A similar approach was proposed in ref. 15. This method was also used in 
ref. 16. 

Now we estimate the interaction between two contours K~ and Kj, the 
interaction between two interface contours IK~ and IKj, and the interaction 
between contour K~ and interface contour IKj. 

Suppose supp Kl = [at, bl] and supp IKt = [a/, bt]. Let 

supp IK + = [bl, ai+ 1] and supp iK  7 = [-bi_ 1, ai] 

where bo = p if there exists K e  PB(~o'(x)) such that supp K =  [ - o% p]  and 
bo = - o o  otherwise; and am+l = q  if there exists K~ PB(~o'(x)) such that 
supp K = [q, oo ] and am + 1 = oo otherwise. 

1. The contour K i e PB(q~'(x) ) interacts with the contour Kj ~ PB(q~'(x) ) 
through all pairs (x, y) such that (x, y ) e In t (K i ,  Kj) and f ' ( x ,  y ) r  
where 

Int(Ki, Kj) = [(x, y): x, y ~ Zl;  x e supp Ki, y e supp Kj] 
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The value of the interaction is 

f ' ( x ,  y) = U(x - y)(q/(x) qr 

-- ~lKi(X) ~]Ki(Y) "~ ~!)i~r ~oi~(Y) 

- Oxj(x) Oxj(Y) + (o~(x) (ok(y)) (42) 

2. The interface contour IKie PB(qr interacts with the interface 
contour IKjePB(~o'(x)) (let aj>bi) through all pairs (x, y) such that  
(x, y) ~ Int(IKi,  IKj) and f " (x ,  y) ~ O, where 

Int(IKi, IKj) = Int l(IKi, IKj) + Int2(IK;, IKj) 

+ Int3(IK~, IKj) + Int4(IK~, IKj) 

Intl(IKi, IKi) = [(x, y): x, y e Z1; x e supp IK i and y ~ supp IKj] 

Int2(IK;, IKy) = [(x, y): x, y e Z1; x e supp IK~ and y e supp IK + ] 

Int3(IKi, IKj) = [(x, y): x, y ~ Z1; x ~ supp IK 7 and y e supp IKj] 

Int4(IK~, IKj) = [(x, y): x, y e Z1; x e supp IK 7 and y ~ supp I K f  ] 

The value of the interaction is 

f " (x ,  y) = f f ( x ,  y) = U ( x -  y)(q/(x) q)'(y) 

- Oix,(x) OlK,(Y) + FPi~(x) (pi(y) 

- 0IN(x) O,~(Y) + qS{(x) ~;~(y)) (43) 
if (x, y) e Intl(IK~, IK;); 

f " (x ,  y) =f; ' (x ,  y) = U(x - y)(q)'(x) (p'(y) 

- OiK~(x) OIK,(Y) + (Pi~(x) FP~(Y)) (44) 

if (x, y) e Int2(IK~, IKj); 

r"~x y ) = ~ ,  , y ) =  U(x-y)(~o'(x)~o'(y) 

-- O,Kj(x) OIKj(Y)) + ~bs qSJ(y)) (45) 

if (x, y) e Int3(IKi, IKj); and 

f " (x ,  y )=  f'4'(x, y ) =  U ( x -  y)(q)'(x) qo'(y) 
-1,i - l i  ~92j - ~o~ (x) ~o; ( y ) -  ; (x) (o~,;(y)) 

if (x, y) s Int4(IKi, IKj) 
tion 3 ]. 

(46) 

[the configuration (bl~'i(x) is defined in Defini- 
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3. The contour K~ePB(~o'(x)) interacts with the interface contour 
IKjePB(~o'(x)) through all pairs (x, y) such that (x, y )e In t (Ki ,  IKj) and 
f " ( x ,  y) ~ O, where 

Int(Kg, IKj) = Intl(K~, IKj) + Int2(K~, IKj) 

Intl(K~, IKj) = [(x, y): x, y e Zl; x e supp Ki and y e supp IKj] 

Int2(Ki, IKj) = [(x, y): x, y e Zl; x e supp K i and y E supp IK + ] 

if aj > b~, and 

Int2(K/, IKj) = [_(x, y): x, y e Zl; x e supp Ki and y e supp I K f  ] 

if ai > bj. 
The value of the interaction is 

f " ( x ,  y) = f'('(x, y) = U(x - y)(q~'(x) q)'(y) 

- ~PI~(x) OKi(Y) + (Pi,,(x) (Pi~(Y) 

- ~,,~(x) r  + r ~ ( y ) )  

if (x, y) ~ Int'(Ki, IKj), and 

f " ( x ,  y)=f~"(x ,  y) 

(47) 

= U ( x -  y)(~o'(x) q)'(y) - $K,(x) tPl~,(y) + ~ ( x )  (pi(y)) (48) 

if (x, y) e Int2(Ki, IKj). 
By using the formulas (42)-(48) later we shall introduce and 

investigate the noninteracting contour model. 
The following lemma will be extremely useful for the further calcula- 

tions. 

I_emma 4. 1. Let us consider two contours (usual or interface), 
say K~ and Kj. Suppose supp K i = [a~, b~], supp Kj = [aj, bj], or supp Kj = 
[aj, + ~ ]  and the distance between supp Ki and supp Kj is a j - b i =  
Ri, j > 0 .  Let suppK~=supplKiwsupp2K~ and s u p p K j = s u p p ' K j w  
supp 2 Kj (see the definition of the essential and regular parts of the support 
of a contour), and N =  min(lsupp 1 Kil, Isupp 1 Kj[). Then 

IG(Ki, Kj)t = ~. I f(x,  Y)t <~ ClRi, f N ' - ~  
(x, y) ~ Int (Ki , /0)  

(49) 

where Ca -- 120An0. 
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Proof. Part A.  Let us consider two intervals [a, b]  and I-c, or)  
such that  b - a = N1, and c - b = R > O. Consider  the following expression: 

Then 

G(a, b, c) = ~ 5 U ( x -  y)  (50) 
x, y a Z l ; y 6 :  [_a,b] a n d x ~  [ c , ~ ]  

G(a, b, c) <~ C 1 o: 1 ~. R N 1 C 1 = 30A 

In  fact, 

R+N1 
G ( a , b , c ) =  ~ U ( i ) ( i - R + I ) + ( N , + I )  

i=R 

- ~ S I ~ - S  2 

S 1 ~Stl = U ( R ) +  U ( R + z ) ( z +  1) dz 

U(j) 
j = R + N I + I  

(51) 

;~1 f~ l  = U(R)+ U(R+z)(R+z)dz- U(R+z)(R-1)dz 

= U(R) + Ix - I2 (52) 

By using the condit ion U(x) ~ A x -  t _ ~, 0 < e < 1, we have (R ~ ~ ) 

U(R) ~ A R - I  - 

Ii  ~ A ( 1  - - g ) - ~  ( ( R + N , )  ~ - ~ -  ( R +  1 ) (1 -~ ) )~A N11-~R -~  (53) 

I2 ~ Ag I(R - 1 ) ( (R + 1 ) ~ - (R + N1 ) ~) ~ AN~ - ~R-  ~(R - 1 )/R 

Therefore, 

I I - I 2 ~ A N  1 ~ R - ~ ( 1 - ( R - 1 ) / R ) ~ A N I - ~ R  1 ~ (54) 

Finally, f rom (50)-(54) we get 

81~81~ CIR-I-~ l-a; ' N~ C 1 = 3A (55) 

N o w  note that  

S2 = (N1 + 1 ) ~ U(j)  <~ S'2 
j=R+NI+I  

;) =(U~+ 1) U(R+Ni+ 11 + (Ul+  1) U(z) az 
= R + N I + I  

= (Ul + 1) U(R + Ul + 1 )+I~  (56) 
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By using the condit ion U(x) ~ A x -  1 - ~, 0 < a < 1, we have (R ~ ~ ) 

(Ul + 1) U(R + N1 + 1 ) ~ A R - I - ~ ' N ~  ~ (57) 

I2 ~ Aa(N1 + 1)(R + Na + 1) -~ ~ A~R-~N~ ~ (58) 

Finally, from (56)-(58)  we get 

S 2 ~ C a R ~Nll - ~; Ca = 3A 

Finally, 
(51). 

Part B. 

(59) 

the inequalities (55) and (59) yield the required inequality 

Let  us consider two segments [a, b] and [c, oo) such that  
b -  a = Ma and c -  b = R > 0. Suppose that  K is an arbi t rary contour  with 
s u p p K =  I-c, ~ ) ;  Ola. b and 0~.b are two regular phases. Consider  the 
following expression: 

Gr(a, b, c) = E 5U(x -- y)(O~,b(x) ~o(y) -- ~bza.b(X) ~p(y)) 
x, y~Zl;x~ [a,b] andy~ [c, oo) 

(6o) 
Then 

Gr(a,b,c)<~C1R-1 ~; Cl=30Ano (61) 

First, note  that  there exists a number  p ' < n o  such that l Oa, b(X) = 
tpla, b(X + p). Therefore 

U ( x  -- y)(~lla, b(X) q)(y)  -- I//~,b(X ) q ) (y) )  

< ( V ( y - x ) -  U ( y - x +  p) <. CoV(x  - y ) / ( x -  y) 

where Co = ~P' < ~no. Then  

1/CoGr(a, b, c) <~ ~ U(x - y) / (x  - y) 
x,y~Zl;x~ [a,b] andya I-c, ~)  
R+NI 

= ~ ( i - - R +  1) U(i)/i+ ( M I +  1). U(j)~[ 
i--R j = R + M I + I  

=s~+s~ 

F s~ < U(R)/R + (z+  1) U(R + ~)/(R + ~) d~ 

F = U(R)/R + U(R + z) d~ 

f? - (R  - 1) U ( R  + z ) / ( R  + z )  & 

= U(R)/R + I~ - I~ (62) 
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By employing the condition U ( x ) ~ A x  ~ ~, 0 < ~ < 1 ,  we have 
( R ~ )  

U ( R ) / R  ~ A R -  2-  

I~ ~ A~-  ~((R + 1 ) ~ - (R + M1) - ~) (63) 

I ~ A ( I + ~ )  I ( R - 1 ) ( ( R + I ) - I - ~ - ( R + M 1 )  ~-~) 

Therefore, 

Ir~ -- V 2 "~ A R  1 --~ (64) 

Finally, from (62)-(64) we get 

S~1<~ C I R  1 ~; C 1 = 3A (65) 

Now note that 

S~ -- (M1 + 1) L U(j ) / j  
j = R + M I + I  

~< (M1 + 1 ) U(R + M1 + 1 ) / (R + M1 + 1 ) 

;) + (M~ + 1 ) U(z) /z  dz 
= R + M I + I  

= (M~ + 1) U ( R + M ~  + 1 ) / ( R + M  1 + 1)+I~  (66) 

By using the condition U(x)  ~ A x  1 ~ 0 < ~ < 1, we have (R --* ~ )  

( M ~ + I ) U ( R + M I + I ) / ( R + M I + I ) < < A  R 1 ~ (67) 

I ~ A ~ ( M  I + I ) ( R + M I + I )  ~ ~<~AR - 1 - ~  (68) 

Finally, from (66)-(68) we get 

S~2 <~ C 1 R - 1 - ~ ;  C1 =3A (69) 

Finally, the inequalities (65) and (69) lead to the required inequality 
(61). 

We estimated the interaction between a finite contour and an infinite 
contour in Part A and the interaction between a finite regular phase and an 
infinite contour in Part B. Now we start directly to prove the statements of 
Lemma 4. We divide the proof of the inequality (49) into three cases. 

1. Suppose that we have two ordinary contours, say Ki and Kj. 
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The interaction between K1 and K2 can be estimated as [see (42)] 

a(gl,  g2) = 2 f '(x,  y) <~ ~ 5U(x - y) 
(x, y) ~ Int (Ki, Kj) (x, y) ~ Int (Ki, Kj) 

Let supp Ki=  supp 1 K~w supp 2 K,, supp Kj=  supp ~ K;w supp 2 K:, and 
N =  min([supp I K~[, [supp 1 Kj[ ). The set of all pairs (x, y )~  Int(K,., Kj) such 
that x e s u p p l  Kg and y ~ s u p p l K j  we denote by E. Then 

G ( K 1 ,  K 2 )  ~ 2 5 g ( x  - y )  + 
( x , y ) eE  

Now note that 

S~ ~ G(a, b, c) = 

6 U ( x - y ) = S l  + S 2 
(x, y) ~ In t (~ ,  ~) ;  (x, y) ~ E 

Y~ 5 U ( x -  y) 
x , y~Z l ; yE  [a,b] a n d x ~  [c, ac ] 

where b - a = N and c -  b = R. According to the inequality (51), 

S I ~ C I R  ~N 1 ~; C1=30A 

In addition, because of the inequality (61) we may write 

$2<~CIR-1-~; Cl=30Ano 

Hence in the first case the proof of the statement (49) is completed. 

2. Suppose that we have one ordinary and one interface contour, say 
Ki and IKj. 

The interaction between Ki and K2 can be estimated as [see (47), 
(48)]: 

G(K,, IKj) = Y" f"(x ,  y) 
(x, y) ~ Int(Ki, IKj) 

= ~ ff '(x, y)+ ~ f;"(x, y) 
(x, y) ~ Intl(Ki, IKj) (x, y) ~ Int2(Ki, IKj) 

= y~ 5 V ( x -  y) + Y~ ,~'~x J2 '~  ' Y )  
(X, y) E In0 (K/, IKd) (x, y) ~ Int2(Ki, IKj) 

= S 1 --[- S 2 (70) 

As in the first case, we have 

SI<~C1R ~N 1-=; C1=30A 

Now note that the formulas (47) and (48) allow us to apply the 
inequality (61) and to get the following estimation: 

$2 <~ C1R -1 =; C1 = 60Ano 
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Therefore in the second case the proof of the statement (49) is 
completed. 

3. Suppose that we have two interface contours, say IKi and IKj. 

The interactiopn between two interface contours IK1 and IK 2 can be 
estimated as [see (43)-(47)] 

G(IK1, IK2)= ~ f"(x ,  y) 
(x, y)  ~ Int( IKi, IKj) 

4 

= E Z f" (x ,  y) 
n= 1 (x, y ) e ln tn ( lK i ,  IKj) 

3 

5v(x- y)+ 
(x, y)  ~ Intt(1Ki,IKj) 

= $1 + $2 

As in the first case 

f~(x,  y) 
n =  1 ( x , y )E ln tn ( IK i , lK j )  

Sa <~ C1R-~'N 1 ~; C 1 = 30A 

Now note that the formulas (43)-(47) allow us to apply the inequality 
(61) and to get the following estimation: 

S 2 ~ C 1 R  1-c~; Cl=90Ano 

The proof of Lemma 4 is completed. 

Now we shall prove seven auxiliary lemmas. Suppose that the bound- 
ary condition qS(x)=[~o(x), x ~ ( - o o , - V - 1 ] u [ V + l ,  oe)] is fixed. 
The set of all configurations 9(x), x~  [ - V ,  V], we denote by q~(V). Let 
q)'(x) e ~(V), and an ordinary contour K and an interface contour IK 
belong to PB(q/(x)). 

Lernma 5. There exists a positive constant t, depending only on the 
Hamiltonian (1), such that the weight of an ordinary contour K satisfies 
the following inequality: 

7(K) > t Isupp I KI 

where t is the constant defined in Lemma 1. 

Proof. Lemma 5 is a consequence of formula (4) and Lemma 1. 
Indeed, let a contour K contain precontours PKi, i= 1 ..... m. This 

implies that supp 1 K =  0 era= 1 supp PKi. 
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The function of interaction G(PKI,. . .  , PKm) is a decreasing function of 
the distance between precontours. Therefore 

7(K) = ~ 7(PK) G(PK1 ..... PKm) > 7(K) 
i = 1  

where the contour K7 is obtained by merging all neighboring precontours 
(thus [supp K[ = Isupp 1 K'[ = z,.ml [Z~'- 1 ~(PK)[ = [supp t K]). 

But according to Lemma 1, 7(K)> t [supp/s Therefore, 

~(K) > t [supp ~ K[ 

Lemma 5 is proved. 

Let us consider an arbitrary configuration q~'(x) ~ q~(V). The boundary 
of the configuration qa'(x) includes a finite number of ordinary contours K~, 
i = 1,..., n, and a finite number of interface contours IKi,  i = n + 1 ..... n + m. 
Let K i =  K~, i =  1 ..... n, and K~= IK~, i = n + 1,..., n + m. The weights of the 
K~ (contours and interface contours) are defined by formulas (4) and (5). 

Let K t be an arbitrary contour of the boundary B(q~'(x)), 
[suppmKt[=Nz;  Ko=q3(Ko), suppK0, where K o = ( - o o , - V - 1 ] w  
[- V+ l, oo); the distance between supp K t and supp Ko is Rl. 

I . emma  6. Suppose Nb > 6Cx/t ~/~ (Nb is a constant introduced in 
the definition of a contour). Then 

n + m  

7(K,)/6> IG(Kt)] = ~ [G(K,, Ks) ] 
j = l ; j ~ l  

ProoL Lemma 6 is a consequence of Lemmas 4 and 
according to Lemmas 4 and 5, 

IG(Kt)] < C~ N b ~ N  ~ ~ < tN~/6 < 7(Kt)/6 

if N~ > 6C~/t. 
Lemma 6 is proved. 

(71) 

5. In fact, 

k e m m a  7. Suppose R t>  6C~/t ~/~. Then 

7(K,)/6 > ]G(Kz, K0)l 

Proof. Lemma 7 is a consequence of Lemmas 4 
according to Lemmas 4 and 5, 

if R~ > 6C1/t. 

and 

]G(K,, Ko)] < C 1 R ,  =N ,l-c~ < tN, /6  < y(K,)/6 

(72) 

5. In fact, 
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Lemma 7 is proved. 

Lemma 8. Suppose N t>  6C1/t 1/~. Then 

7(K,)/6 > IG(K,, Ko)l (73) 

Proof. Lemma 8 is a consequence of Lemmas 4 and 5. In fact, 
according to Lemmas 4 and 5, 

IG(K~, Ko)l < C1RT"N~- ~ < tNJ6 < 7(K1)/6 

if N~ > 6C1/t. 
Lemma 8 is proved. 

Suppose IK is an interface contour. Let us consider the configuration 
$~x such that the boundary of the configuration $IK includes only the con- 
tour IK (see Definition 3). Let the special ground states 9n0(x) and q~Z0(x ) 
be defined as in Definition 3. The set of all configurations ~0'(x)e q~ such 
that PB(r contains the only interface contour and the same special 
ground states ~oln0(x) and (p]0(x) we denote by q~1,2. 

Lemma 9. Let the configurations q~(x), r  I~ 1'2 contain unique 
interface contours IK and IK', respectively, and two regular phases $l (x)  
and $2(x). Moreover, let the restriction of the configuration ~o'(x) on 
supp IK coincide with (p(supp IK) and Isupp IK'] - Isupp KI > Nb. 

There exists a positive constant t depending on the Hamiltonian (1) 
only, such that the weight of any interface contour IK satisfies the 
following inequality: 

7(IK') - 7(IK) > t(]supp IK'I - Isupp KI - Nb) 

ProoL Let the configurations cp and (p' be obtained, respectively, 
from the configurations q~(x) and (p'(x) by substitution of $2(x) by Sa(x). 
In other words, the configurations ~o and (p' are obtained by shifting of 
the regular phase $2(x) for some p < n o. The configurations q)(x) and ~o' 
contain the usual contours K and IK. Then 

H(cp(x))-H(go)<<. ~ ( U ( x ) -  U ( x + p ) ) x  
xEZI;x>0 

<<. ~ 2Ax(x ~ - ( x  + p) ~1 
xEZI;x~- 0 

2A~px ~ < const ~< 
xaZl;~>O 
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and 

H(~o'(x))-H(~o')<<. ~ (U(x)- U(x + p))x 
x~Zl ;x>0  

<~ ~ 2 A x ( x  ~ - (x  + p ) - ~ )  
xEZ1;x>O 

<~ ~ 2 A ~ p x - ~  < const 
xEZI;x>O 

Therefore, 

y( IK ' )  - ~(K) = H(ep'(x))  -- H ( $ l ( x ) )  - (H(~o(x)) -- H ( $ l ( x ) ) )  

= H(q~'(x)) -- n(~p(x))  > H((p') - n(~o) - const 

Now note that according to Lemma 8 

H(cp'(x))  - n ( ( p ( x ) )  = y (K ' )  - 7(K) > t(isupp IK'[ - [supp K[ - Xb) 

Lemma 9 is proved. 

L e m m a  10. There exists a configuration 1 2 051,2 ~0min(X ) ~ such that 

/-/(~01,2(x)) - m ( ~ o ( x ) ) / >  0 

for each configuration q~(x)~ ~1,2. Let I K ~ i  2 be a unique contour of the 
configuration ~ 2 1,2 IKmi n] 3d0no + Nb. ~0mi n. Then Isupp < 

Proof .  Lemma 10 is a consequence of Lemma 9. 
Indeed, let us consider the configuration q~(x)E ~1,2 with the unique 

interface contour K such that ]supp IK[ <3dono [-the existence of the 
configuration q~(x) is obvious]. Then according to Lemma 9 

[supp 1,2 [Kmin[ < [supp IKI + Nb < 3dono + Nb 

I . e m m a  11. Suppose ~o(x), q ) ' ( x ) ~ ( V )  and the restriction of 
q~(x) on some segment [a, b ] ~ [ - V +  Nb, V - -  Nb] coincides with a special 
ground state q~0(x). The configuration ~0'(x) is some perturbation of q~(x) 
on the segment [a, b]. The set PB(q) '(x);  [a, b])  is the set of all contours 
(usual and interface) K ~ P B ( ~ o ' ( x ) )  and suppKi~  [a, b]. Suppose that 
PB(q~O'(x); [ a , b ] ) = U ' ; = l K i  �9 Then there exists a positive constant t 
depending on the Hamiltonian (1) only, such that 

• ~,(Ki) > t ~ Isupp I Kil 
i = l  i=1 
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Proof. The proof coincides with the proof of Lemma 5. 

Now we are ready to prove the following result. 

Lemma 12. Suppose that the boundary conditions q3(x)= [~o(x), 
x e ( - o% - V -  1 ] u [- V+ 1, oo )] are fixed and Nb > 6C1/t 1/~. The set of all 
configurations q~(x), x �9 [ - V, V], we denote by 4(V). Let q~min(X) �9 qS(K) 
be a configuration with the minimal energy 

g((Pmin(X)) = lim H(qo(x)) (74) 
cp(x) E ~(K)  

Then the configuration ~0min(X) has the following structure: 
The restriction of the configuration q~min(X) on the set [ - V + N b ,  

V--Nb] contains at most no--1 contours; moreover, all of them are 
interface contours IKi, i = 1  ..... m, where m < n o - 1  and IsupplKil< 
3d0n0 + Nb. 

Proof. Let the boundary of the configuration ~0'(x) include a finite 
number of ordinary contours Ki, i = 1 ..... n, and a finite number of interface 
contours IKi, i=n  + 1,..., n +m. The set of all contours of the boundary 
conditions qS(x) will be denoted by Ko. 

The following equation is a direct consequence of the formulas (4) 
and (5): 

n + m  n + m  

H(~p'(x))--H(P,o(X))= ~ 7(Ki)+ ~ G(Ko, K1 ..... Kn+m) (75) 
i= 1 i , j = O ; i < j  

where ~on0(x ) coincides with a special ground state ~bl~(x) (see Definition 3) 
defined for the first from the left contour (ordinary or interface) Ki, 
i= 1,..., n + m, and the multiplier G(Ko, K1,..., Kn+,,) corresponds to the 
interaction between contours (ordinary and interface) and with the 
boundary conditions, 

t /+m 

a(Ko, K~,..., Kn+m)= 2 G(K, Kj) (76) 
i , j =  0 ; i < j  

Let K~, i= i~ ..... ip, be an arbitrary ordinary contour of the boundary 
B. Then automatically a distance Ri between supp K~ and supp g is greater 
than Nb. Then according to Lemma 6 

H((p'(x)) - H ( ( p i ( x ) )  = ~ ( K i )  - [G(K31 >/0 

where the configuration ~pi(x) is obtained from the configuration q/(x) by 
deleting of contour Ki. 
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By continuing this procedure we get 

H(~o'(x)  ) - H(e i , ,  .,ip(x) ) > 0 

where the configuration (pil'"ip(x) is obtained from the configuration q)'(x) 
by deleting of contours Kil,..., Kip. 

Let [Kz, i=ip+l ..... ip+q] be a set of all interface contours of the 
boundary B, such that the distance Ri between supp Ki and supp k is 
greater than Nb. 

According to Lemma 11, upon deleting all interface contours except at 
most n o -  1 (we have at most no distinct regular phases which correspond 
to no distinct special ground states), we can obtain the configuration 

(])del __ ~oil,...,ip,ip+ l,...,ip+q,g(X ) 

such that 

O ( ( 1 9 ' ( x ) )  - O ( ( p d e l ) ( x )  > 0 

Further, let K 1 and K2 be a contours with [supp Ki[ >Nb, i= 1, 2, 
such that s u p p K l = [ a l ,  b l ] u [ b  1 + 1 , c l ]  and suppK2=[c2 ,  a 2 - 1 ]  
[-a2, b2]  , where bl = - -V+Nb and a2--- V - - N  O. 

Then, according to Lemma 8, 

H ( ( p  del) - n ( ( p  del ' l  ) > 0 (77) 

where the configuration @del, 1 is obtained from the configuration @del 

by deleting of contours K'I = (~odel([bl + 1, cl], [bl + 1, Cl]) and K; = 
( ( p d e l ( [ c 2 ,  a 2 - -  l ] ,  [-c2, a 2 - -  l l ) .  

The inequality (77) shows that a configuration with the minimal 
energy contains at most n 0 - 1  interface contours in the interval 
[ - V+ Nb, V -  Nb]. Let supp IKi be an interface contour of the configura- 
tion CPmin(X ). According to Lemmas 10 and 6, 

[supp IKil < 3don o + Nb 

Therefore, there exists a configuration (~9 del'2 such that 

H(q0del,  1) __ H ( ~ d e l , 2 )  > 0 (78) 

where the configuration ~0 del'2 is obtained from the configuration (19 del'l by 
chopping of large interface contours (contour IKi is said to be large if 
[supp Igi[ > 3dono + Nb). 

Lemma 12 is proved. 



600 Kerimov 

By using Lemma 12 we shall give a full description of the set of all 
ground states. 

We know that each special ground state is a ground state (see 
Remark 2). 

T h e o r e m  4. Let the value of the external field # of the model (1) 
belong to the interval (#~-, #+ ) for some number ic = q/p = 1~no. Suppose 
that r is a ground state of the model (1). Then the configuration (p'(x) 
contains at most n o - 1  interface contours IKg such that IsupplK;[ < 
3d0n0 + Nb < const. 

Proof. Theorem 4 is a direct consequence of Lemma 12. Indeed, let 
q)'(x) be a ground state of the model (1). 

Let us consider an arbitrary segment [ - V ,  V], and a boundary 
condition (o(x)=[~o'(x) ,  x ~ ( - o o , - V - 1 ] u [ V + l ,  oo)]. The set of 
all configurations q)(x), x e [ - V ,  V], we denote by 45(V). Suppose a 
configuration q3min(X)e 45(V) is a configuration with the minimal energy 
[see (75)]. 

According to the definition of the ground state, (1) for each 
xE[--V+ Nb, V-Nb] 

(Pmin(X) ~-- q)t(X) 

and the configuration r according to Lemma 12 has the required form 
in the segment [ - V +  Nb, V - N b ] .  Note that V can be chosen arbitrarily 
large. The proof of Theorem 4 is completed. 

Theorem 4 shows that each ground state is a special ground state or 
a combination of several special ground states. 

3. G I B B S  STATES.  T H E  D E N S I T Y  K IS 1In o 

In this section we prove the uniqueness of the Gibbs states for special 
values of the external field (when the density of the special ground state 
is 1/no). The general case will be considered in Section 4. 

Suppose that the value of the external field # of the model (1) belongs 
to the interval (#~-,/~+ ) for some number ~c = q/p = 1~no, and the boundary 
conditions O(x) = [q~(x), x ~ ( - oo, - V -  1 ] u [ V + 1, oo)] are fixed. 

Let ~0(x)E 45(V) be an arbitrary configuration; the boundary of the 
(p(x) includes a finite number of usual contours Ki, i = 1,..., n, and a finite 
number of interface contours IKi, i = n + 1 ..... n + m. Let K~ = K~, i = 1 ..... n, 
and K~ = IK~, i=  n + 1 ..... n + m. The set of all contours of the boundary 
conditions O(x) will be denoted by Ko. 
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The statistical weights of contours and interface contours are 

w(Ki) = exp( -/~7(K~)) 

Let 

H( ~o(x) l (o(x) ) = -~t y~ ~(x) 
x E Z l , x e [ - v , v ]  

+ E 
x, y c Z l , x >  y;x, yE [-- V, V] 

+ E 
x , y ~ Z l , x >  y ; x e [ - - V , V ] ; y r  

+ E 
x, y e Z l , x >  y ; x r  [ -  V, V ] , y e  [-- V, V] 

U(x- y)~(x)~(y) 

U(x- y) ~(x)~(y) 

U(x- y) ~(x)~(y) 

(79) 

The following equation is a direct consequence of the formulas (4), 
(5), and (79): 

r/ -t- m 

exp{ -~H(~o(x) l(o(x))} = I~ w(Ki) exp{ -[3G(Ko, K1 ..... K,+m)} (80) 
i = 1  

where the multiplier G(K o, K1,..., Kn+m) corresponds to the interaction 
between contours [-usual and interface; see (42)-(48)] and with the 
boundary conditions q3(x): 

n W m  

G(Ko, K1,..., K,+m)=  ~ G(Ki, Kj) 
i , j = O ; i < j  

= ~ ~ f(x, y) (81) 
i , j ; i < j  (x ,y )~In t (Ki ,Kj )  

For simplicity, Ki, i = 1 ..... n + m, will be denoted by Ki, i e I, where 
the statistical weights are defined by the formulas (79), (4), and (5). Thus, 
the formula (80) has the form 

exp{-flH(~p(x)lCo(x))} = I~ w(K~)exp{-flG(Ko, K1 ..... Kn+m) } (82) 
i e I  

The set of all pairs (x, y) in the double sum (81) will be denoted 
by G. Write (82) as follows: 

exp{-/~H(cp(x)lO(x))} = H w(K~) I~ {1 +exp( - /~ f (x ,  y ) -  1)} (83) 
i ~ l  ( x , y ) ~ G  

From (83) we get 

exp{-BH(~o(x)l(o(x))}= ~ ~I w(K~) ~I g(x, y) (84) 
G ' c G  i ~ l  ( x , y ) ~ G ' ; f ( x , y ) ~ O  

822/72/3-4-13 
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where the summation is taken over all subsets G' (including the empty set) 
of the set G, and g(x, y )=exp( - f l f ( x ,  y ) ) -  1. 

Consider an arbitrary term of the sum (84), which corresponds to the 
subset G'cG.  Let the bond (x, y)eG'.  Below, contours and interface 
contours will be called contours. Consider the set K of all contours such 
that for each contour K c  K, the set supp Kc~ (x u y) contains one point. 
We call any two contours from K connected. The set of contours K' is 
called G' connected if for any two contours Kp and Kq there exists a collec- 
tion ( K  1 ----Kp, K2,..., K,, = Kq) such that any two contours Ke and Ke+ 1, 
i = 1,..., n - 1, are connected by some bond (x, y) ~ G'. 

D e f i n i t i o n  4. The pair D = [(Ki, i =  1,..., s); G'],  where G' is some 
set of bonds, is called a cluster provided there exists a configuration q~(x) 
such that K~ePB(9(x)), i= 1,..., s; G ' c  G; and the set (K~, i =  1 ..... s) is G' 
connected. The statistical weight of a cluster D is defined by the formula 

w(D) = (I  w(Ki) l~ g(x, y) (85) 
i = l  ( x , y ) ~ G '  

Two clusters DI and D2 are called compatible provided any two 
contours K~ and K2 belonging to D1 and D2, respectively, are compatible 
and not connected. A set of clusters is called compatible provided any two 
clusters of it are compatible. 

If D = [(Ki, i =  1 ..... s); G'] ,  then we say that K~eD, i= 1,..., s. 

I . emma  13. Let boundary conditions ~(x) = [q~(x), x ~ (-  ~ ,  - V-  1 ] u 
[ V +  1, oe)] be fixed. 

If [D1 ..... Om] is a compatible set of clusters and u i m l s u p p D i c  
[ - V ,  V], then there exists a configuration ~o(x) which contains this set of 
clusters. For  each configuration ~o(x) we have 

exp{-flH(~0(x)l  qS(x))} = ~ 1~ w(Di) 
G ' = G  

where the clusters Dr are completely determined by the set G'. The 
partition function is 

-~(~(x)) = ~ w(D1).., w(Dm) 

where the summation is taken over all nonordered compatible collections 
of clusters. 

ProoL The proof of Lemma 13 follows immediately from the definitions. 
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i - -  = =  I d | ~ i 

(a) (b) 
Fig. 1. 

Lemma 13 shows that we come to noninteracting clusters from inter- 
acting contours. Figure la shows contours K~ and IK2 of a configuration 
q~(x) and Fig. lb shows a cluster (one of many) corresponding to these 
contours. 

k e m m a  14. Let D =  [(Ki, i =  1 ..... s); G']  be an arbitrary cluster. 
Let supp 1D = Zs= 1 supp ~ Ki and tl -- 5t/6, where t is the constant defined 
in Lemma 5. Then 

w(D) < exp(--fl t l  Isupp I DI) 

Proof. This 

w(D) = 

lemma follows from Lemmas 5 and 6. Indeed, 

(I w(I,:,) 1-I g(x, y) 
i = 1  (x,y)~G' 

< ~ e x p ( - f l t  [supp 1 Ki] ) 
i = 1  

~< 11I e x p ( - f l t  Isupp 1 K/I) 
i = 1  

<~exp{--fl L tlsupplKi,+ 
i = 1  

< exp( - 5 f i t  Isupp 1 DI/6) 

f I  g(x, y) 
(x,y)~G' 

[ I  exp(tflf(x, y)[) 
(x,y)~G' 

B If(x, yl]} 
(x,y)eG' 

Lemma 14 is proved. 

L e m m a  15. Suppose that the value of the external field /~ of the 
model (1) belongs to the interval (/~-, #+ ) for some number • = q/p = 1~no, 
and boundary conditions ~(x) = [~0(x), x e ( -  o% - V -  1 ] w [ V + 1, Go)] 
are fixed. 

In the proof of Lemma 12 we have defined a configuration ~0 de~'2 for 
each configuration ~o(x)E ~b(V). Let us consider the set of all configurations 
(pae~'2(x). According to Lemma 12 (a boundary of each configuration 
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~0del'2(X) contains at most n o - 1  interface contours and two contours 
around the boundary), 

max [B(~0d~l'Z(x))[ ~< (3dono + Nb)(no + 1 ) = J~ 

Let J = J1 + Nb(no + 1). 
Let D be an arbitrary cluster, such that Isupp DI > J. 
Then the probability of the cluster D is given by 

P(D) < w(D) exp(fltlJ) < exp{ - f l t l ( l supp D] - J)/3Ub} (86) 

Proof. We prove this lemma by using the method of the Peierls 
argument. 

According to the definition, the probability of D is 

Z 1 w(D) w(D1).-, w(Dk) 
P(D) = (87) 

z(v)  

where w(D)= Hi=~ w(Dj), and the summation in ~1 is taken over all 
nonordered compatible collections D, D1,..., Dk of clusters containing D. 
The partition function is 

Z(V) = ~ w(D1).., w(Dm) 

where the summation is taken over all nonordered compatible collections 
of clusters. 

Let us consider an arbitrary term w(D) w(D~). . ,  w(Dm) = Zig from the 
numerator of (87). 

According to Lemma 13, there exists a configuration opt(x) such that 
D~ B(cpt(x)), Di~B(cp(x)) , i= 1,..., m. 

Let us consider the configuration cp~e~'Z(x) corresponding to the 
configuration cy(x) (see the proof of Lemma 12). Let 

and 

supp/3 = supp D c~ B(cp~el'Z(x)) 

L) = (cf(supp/3), supp D) (88) 

In the denominator of (87) obviously there is the same term ZS. 
Consider the following expression: 

2 5 = w(b) w(D1).-, w(D~) 

where w(D) is defined as (85). 

(89) 
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D 

(a) ? I U - - - - ~  i~"~ , 

D~ D z 

605 

IK~ IKz 

[] I 

(c) 
"1 ) m ~ ,L, i m- 

Fig. 2. 

Figure 2a shows a collection of clusters corresponding to the term 
ZJ=w(D)  w(D~)w(D2), Fig. 2b shows a contours of the configuration 
g0dr and Fig. 2c shows a collection of clusters corresponding to the 
term 2J. 

Now consider the ratio 

ZJ/ZJ = w(D) w(D 1 ) . . .  w ( O m ) / w ( O  ) w(D1) .'.  W(Dm) = w(D)/w(D) 

According to Lemmas 6-8 (note that Isupp D[ > [supp 1 Dt 3Nb), 

w(D)/w(D) < exp{ -- fltl([supp DI - IB(rpdel'2(x))l -- Nb(no + 1))/3Nb} 

<exp{ --flq(lsupp DI - J 1  --Nb(no + 1))/Nb } 

= exp { -- flt l(I supp D I - J)/Nb } 

Finally, 

ZJ/ZJ < exp{ - flq(Isupp Ol - J)/Nb} 

Now we are ready to complete the proof. Indeed, 

E'  w(D) w(D,) ... w(Dk) 
P(D) - 

~(v) 

y l  Z t y l  Z l 
--~_ /-<-~---~<exp{-fltl(lsupp--~ t D I - J ) }  =(v) Z z~. 

where the last incquality is fulfilled duc to the inequality (90). 
Lemma 15 is proved. 

(90) 

L e m m a  16. Suppose that the value of the external field # of the 
model (1) belongs to the interval (p~-, #+ ) for some number x = q/p = 1~no, 
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and boundary conditions qS(x) = [q~(x), x e  ( - 0 %  - V -  1] w I V +  1, oe)] 
are fixed. 

Then for any large enough fl there exists Nb = Nb(fl), such that, for an 
arbitrary cluster D such that supp D e [ - V, V] 

F ( D ) =  ~, w ( D ) < e x p ( - f l t z l s u p p l D ] )  (91) 
D : D c D  

where t2 = tl/3. 

Proof. Let D be an arbitrary cluster containing K: K~D.  We say 
that a contour K' ~ D is a neighbor of the first order of a contour K in a 
cluster D and write K' ~ K provided K' and K are connected (see Defini- 
tion 3). A contour K" is called a neighbor of the qth order for a contour 
K provided K,,-* K1 +--' ... ~ K q _  1 ~ K" and there are no such diagrams 
with fever arrows. Therefore, with a fixed contour K~ D, all the other con- 
tours of a given cluster D are divided into nonintersecting classes indicated 
by the integers 1 ..... p of contours that are neighbors of the qth order for 
the contour K, q = 1,..., p(D, K). The number p(D, K) is called the order of 
the cluster D with respect to the contour K. The contours that are 
neighbors of qth order of a fixed contour K will be denoted by Kq(K). 

Besides the weight w(K) [see (79)] we introduce the new weight 

we(K) = w(K) exp(flc Isupp 1 KI) (92) 

According to Lemma 5, 

~c(K) < exp( - f l ( t  1 - c) supp 1 K} 

First we prove the following inequality: 

FI(K) = ~ w(D) wc(K') 
D: D = ( ( K , K ' ) ; G ' )  

< exp{ - - f l ( t  1 - -  C) supp 1 K} 

It can be shown that 

g(x, y) 
( x , y )  E G '  

(93) 

where 

F~(K) <<. w(K) 1~ ~ 

H '= FI {1+ E 
x ~ s u p p  K y: d i s t ( y ,  s u p p  K )  > N b 

Qc = E w~(K) 
K: y ~ s u p p  K 

[g(x, y)l(1 + Q~)t 
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Now note that 

Q o < l  

~(tl - c)/3Nb > 2 In 2 + 1 

In fact, 

Qc-<  z 
m = 1 K : y s s u p p  K ; l s u p p  KI = m  

According to Definition 2, Isupp ~ KI >/Isupp KI/3Nb, and 

exp{ -/~(tl  - c)(Isupp 1 KI)} 

when 

607 

(94) 

{95) 

Qc<~ ~ m2 m exp{ -~ ( t l  -c)(m/3Nb)} 
m = l  

~< ~ exp{ - ( f l ( t  1 -c ) /3N b - (in 2 +  l))m} 
m = l  

< 2 exp { - (/~(tl - c)/3Nb -- (ln 2 + 1))} < 1 

Now we estimate the product ]-I 1. 
By using (94), we have 

I~1~< l-[ { 1 +  ~ 2g(x,y)} 
x e  s u p p  K y :  d i s t ( y ,  s u p p  K )  > N b 

~<expt ~ i n ( l +  ~ 2[g(x ,y) l )}  
~-x  ~ s u p p  K y :  d i s t ( y ,  s u p p  K)  > Nb 

x c s u p p  K y:  d i s t ( y ,  s u p p  K ) >  N b 

Therefore, 

F'(K)<<-w(K)HI<<-w(D)exp{ Z Z 2lg(x,y)l} 
x ~ s u p p  K y:  d i s t ( y ,  s u p p  K)  > Nb 

Note that 

[g(x, Y)I = lexp{-flf(x, y)} - 1[ 42/3 If(x, y)[ 

If(x, y)l < 1 (96) 
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Finally. 

Fl(K)<~w(K)exp{ ~ ~ 4~,f(x,y)[} 
x E s u p p  K y :  d i s t ( y ,  s u p p  D ) >  N b 

w(K) exp(4fl IG(D)[) 

exp( - fit1 [supp t KI/3) 

The last inequality follows from Lemma 14. 
Therefore inequality (93) is fulfilled with c = 2t/3 when the conditions 

(95) and (96) hold. 
Let D = [(Ki, i =  1,..., s); G']. Now by induction on the order of a 

cluster and employing (93), we obtain the following inequality: 

F ( D ) =  ~ w(D) 
D : D ~ D  

<- FI wc(Xi) H g(x, y) 
i - -1  ( x , y ) ~ G '  

=exp(/?c [supplDI) 11I w(Ki) 1-[ g(x, y) 
i = i  ( x , y ) E G '  

~< exp(/?c [supp 1 DI) exp(-/~tl  [supp 1 D[) 

The last inequality follows from Lemma 14. 
Finally, 

F(D) ~<exp(-t~fl lsupp ~ DI/6) 

Lemma 16 is proved. 

L e m m a  17. Suppose that the value of the external field # of the 
model (1) belongs to the interval (#2, #~+) for some number • = q/p = 1~no, 
and boundary conditions O(x) = lop(x), x s  ( -  0% - V -  1] w I V +  1, oe)] 
are fixed. 

Then for any/~ large enough there exists Nb = Nb(/~) such that for an 
arbitrary subset Y of the segment [ - V ,  V] such that I YI > 4 J  (J is a 
constant defined in Lemma 15), we have the probability 

P(A r) = P( Y does not contain any segment [a, b l, 

such that ~0([a, b]) is a regular phase 

< exp { -/3t3 (I YI/4 - J) } (97) 

where t3 = tl/6Nb. 
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ProoL According to the definitions, 

P(Ar)  = ~, P(cp(x)) = ~ P(D)  
~ o ( x )  ~ ~ ( V )  D :  Y ~ s u p p  D a n d  D ~ D 

Suppose that Y= (.)~= ~ Yi, where Y~, i =  1 ..... s, are segments such that 
dist( Y~, Yt) > Nb. Then 

P(Ar)~< ~ ~ l  P ( D ) =  ~ S(m 1 ..... m~) 
m I , . . . , 'm s ~ 0 m l  ,.-., m s  = 0 

where the sum Z j is taken 
Y~ c Ki; Isupp K~I = I Yel + me. 

According to Lemma 15, 

over all the clusters D :  Ki  ~ D ,  i = 1,..., s; 

P(D) < w(D) exp(/~tl J) < exp { -/~tl( lsupp D] - J)/3N b } 

Therefore, 

S(ml ,..., ms) < exp(~tiJ/3Nb) ~1 w(D ) 

Now note that IsupplDI > IsuppDI/3Nb, there are at most 2 I:eii+m' 

contours with [supp Kel = I Y~] + mi, and the distance between the left end 
of the contour K~ and the set Y is not greater than m~. By using inequality 
(91) from Lemma 16, we get 

S ( m l  ..... ms) < exp(fltlJ/3Nb) FI 2mimi exp{ --flt2(I Yi[ + mi)/3Nb} 
i = l  

= exp(~tlJ/3Nb) exp{ --fit2([ YI + m)/3Nb + m(ln 2 + 1)} 

Finally, 

P(Ar)  S(m~ ..... ms) 
m l , . . . , m s  

<<. exp(~tlJ/3Nb) FI ~ 2"'mi exp{-~t2( j  Yil + mi)/3Nb} 
i =  1 m i = l  

<~ exp(fltlJ/3Nb) ( I  exp(--~t2 [gil/3Nb + 3) 
i = l  

~exp(~tlJ/3Nb) exp(- f l t2  I Y[/3Nb + 3 ]YI) 

~< exp { --/?tl(I YI /4-  J)/3Nb } e x p ( -  fit 2 I Yl/6Nb + 3 I YI) 
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if 

if 

Finally, 

flt2/3Nb > in 2 + 1 

P(A r) < exp { -/~tl  (I YI/4 - J)/3Nb } 

/~t2 > 18Nb (98) 

Lemma 17 is proved. 
Lemma 17 allows us to describe the set of all typical configurations of 

the model (1) at low temperatures. 
Now we have completed the proofs of all preliminary lemmas and 

hence pass to the proof of the uniqueness of the Gibbs states. 

4. U N I Q U E N E S S  OF THE GIBBS STATES.  
THE DENSITY  K IS l / n  o 

In this section we prove the following result. 

T h e o r e m  5. Suppose that the value of the external field # of the 
model (1) belongs to the interval (#2, #~+ ) for some number tr = q/p = I/no. 

Then the model (1) has a unique Gibbs state at all sufficiently small 
values of temperature [/~-1 < const(#, U(x))]. 

First we prove the following key lemma. 
Let p1 and p2 be two Gibbs states of the model (1) corresponding to 

the boundary conditions r and cp2(x), respectively. 

Lemma 18. Suppose that the value of the external field /~ of the 
model (1) belongs to the interval (#2, #+ ) for some number K = q/p = 1~no. 

Then the measures p1 and p2 are absolutely continuous with respect 
to each other. 

ProoL Let I =  [ a ,b ]  be an arbitrary segment and q~'(I) be an 
arbitrary configuration. In order to prove the lemma, we show that there 
exist two positive constants s and S not depending on I and ~0'(I) such that 

s ~< p l ( q ) , ( [ ) )  : p2(q~,(i)) ~< S (99) 

Let P~ and p2  be Gibbs measures corresponding to the boundary 
conditions q01(x) and qo2(x), x e Z I - I N ,  respectively, where Iu=(- -Oe ,  
- -N--  1] w [ N +  1, +oe). 
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By assumption, 

1 p l  lim Pu---- and lim PZN=P2 

where we consider a weak convergence of probability measures. 
In order to establish the inequality (99), it will be shown that for each 

fixed interval/ ,  I ~  I - M ,  M],  there exists number No(M),  which depends 
on M only, such that 

if N > No.  
Consider 

s < P~N(q/(I)) " P2N(q/(I)) ~< S (100) 

Z*(IN):*(t) = *'(t) exp { -- [3H(9(IN) I q~'(x)) } 
P~N(~'(I)) = 

Z,(IN) exp { -- flH(~o (Iu) l ~P I(X)) } 

Z ( I u - -  II @(X), q/(I))  
-- 2q~"(l) "~([N--  I[ (# I (X) ,  q/'(I)) 

where S( IN- - I [  ~pI(x), ~0"(I)) denotes the partition corresponding to the 
boundary conditions 91(x), x ~ Z 1 - I N, and ~p'(I), x ~ L 

We can express p2(~p,(i)) in just the same way. 
In order to prove the inequality (100), it is enough to show that 

IG(~o(I), N, cpi(x))l = ~ I f (x ,  Y)I < 1, 
(x, y) ~ Int(L Z l IN) 

and 

1 ~(IN--IIq)I(X) ,  ~O"(I)) 3(IN--II~o2(X), (p"(I)) 

-S ~ ~,(IN -- II q~(X), ~0'(I) ) " ,~,(I N -- II ~02(X), qr ) 

for arbitrary (p"(I). 
If the inequalities (101) and (102) hold, then 

Pl(~o'(I)) �9 PZ(qr 

i = 1 , 2  (101) 

1 
4 -  (102) 

S 

�9 (Z~,,r Z(IN--  Zl ~01(x), ~o"(Z)) Z~".~ •(IN - II ~02(x), q/'(I))'~ 
=1 \ ~ ( / - ~ - ~ - ~ ( ~ , ~ - 7 ( ~  � 9  ~ ] 

= 1 �9 (~,,,<i) Z ( I u - - I I  ~l(x) ,  (p"(I))) Z ( Iu  --II  ~02(X), ~p'(I)) 
(Zq~"(I) '~( IN -- I[ (~92(X), ~0 ." ( I ) ) )  Z ( I  N --  I I q~l(X), ~O'(I) ) 

Therefore, 

1 : 1 / s  ~ P ~ ( q / ( I ) )  " p z ( ~ p , ( / ) )  ~< 1 " 1/S 
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since the quotient of ~2" ~= ~ a~ : ~2i  = 1 b~ lies between min(ajb~) and 
max(ai/bi). 

The inequality (101) easily follows from Lemma 4. Indeed, according 
to Lemma 4, 

IG(cp(I), N, ~e(x))l ~ C~ IN-- MI-= M ~-~ 

and hence for each fixed M there exists N o such that if N > N o ,  then 
JG(q~(IK), N, ~e(x))l < 1. 

Thus, for completing the proof of Lemma 18, we have to prove the 
following inequality [which is just the transformed inequality (102)]: 

1 . < - ( N - - I I ~ o I ( x ) ,  qO"(f))Z(lN--Ilep2(X), gO'(I)) Za '"Z  2'' 1 

-S'r -~2""~"<~-- s (103) 

Consider one of the four partition functions from the previous 
inequality, say ~ " .  According to Lemma 13, 

~ I , ' = ~ - ~ I " w ( D ~ , ' ) . . . w ( D ~ '  ) 

where the summation in ~ l , t  is taken over all nonordered compatible 
collections of clusters [-D~" --. D~;'J, (J i m 1 supp D~" c I N -  I correspond- 
ing to the boundary conditions ~01(x), x e Z  ~ --IN, and cp'(x), x e I .  

A cluster D =  [(Ki, i =  1 ..... r ) ;G ' ]  of the above sum is said to be 
( m G' long if the diameter of the set (Ji=~ suppDi)w is greater than 

( N - M - N b ) / 2  (Nb is defined in Definition 2) and the set 

( ( 9 )  ) suppDi ~ G '  ~ ( ( Z I - - I N ) ~ I ) )  
i 1 

is not empty. 

I . emma  1 9. Let hi and h2 be positive constants such that 0 < hi < 
1 < h2. Then for each fixed interval/ ,  I c  [ - M ,  M],  there exists a number 
No(M),  which depends on M only, such that if N > No, 

Z "  '=  h" '  ~ w(D~") " " w(D~ ') = ,,l~1" ~-o1" 

hl <~ hl" << h2 

where the summation is taken over all nonlong, nonordered compatible 
collections of clusters IDa" D~ ' ] ,  (.-Ji=~ supp i . . .  m D i c I N -  1, correspond- 
ing to the boundary conditions r x~ Z 1 --IN, and ~o'(x), x e I .  
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ProoL Let X(I, (p'(x), N, M) = Z w(D), where the summation is 
taken over all long clusters D [hence the length of each cluster is greater 
than ( N - M - N b ) / 2  ]. We can repeat the arguments used in the proof of 
Lemma 4 and prove the following inequality: 

In X <  II[ 1- = ( ( N -  M -  Nb)/2) ~ 

and by choosing sufficiently large N to prove Lemma 19. 
But we prefer another way. From the proof of Lemma 16 [see (91)] 

it is known that for each fixed M 

In X(I, (p'(x), N, M) < const 
N = M  

Therefore, limu M--Ub~ co In X(L (p'(x), N, M ) =  0 and hence for each 
M and hi, h2 (0 < hi < 1 < h2) there exists No such that 

hi < X(I, ~p'(x), N, M) < h2 

if N >  No. 
Now we can complete the proof. In fact, 

%"l , t  = ( , _~1 , ' /~_~1 , '  - -  ] a l , / ~ " l , t  

Consider h 1'1 = ~_.~ 1, , /~.~1,  ,. 
Note that if [D~" ~' . . -D m ] is some term of the sum in the 

denominator, then the sum of all terms from the numerator including 
[D1-. .Dm] is less than w(Dl). . .w(Dm)X(I,  q;(x), N, M). Therefore, 

Lemma 19 is proved. 
According to Lemma 19, 

hl < hl" ~ h2 

~ , i , t  __ ] ~ l , t , ~  1, r 

where 

hl <~ hl,' ~ h2, hl ~ hl'" <~ h2, hl ~ h2" ~ h2, 

Therefore, the validity of inequality (103) with 

1 / S =  2 Z hl/h 2 Q2h2/hi, 1/S= Q1 2 

directly follows from the following result. 

hx ~ h2"" ~ h2 
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Lemma 20. For  each fixed interval /, I c  [ - M ,  M ]  there exists a 
number  No(M) such that  if N > No(M) 

~.~ l ,  tt ~'  2, O 

Ql <~ Y-,z'"~l--------~<~ 

where the two positive constants Q1 and Q2 do not  depend on q~'(I), ~o"(I), 
q~l(x), and q~2(x). 

ProoL Consider  -o='1'"~2"~o . By definition and according to Lemma 13, 

z l ,  t, Z 2 ,  , = ~ 1 , , ,  ~-~2, t w(D~'").., w(D~") w(D12") . . .  w(D 2'') 

where the summat ion  in 521,,, is taken over all nonlong, nonordered  com- 
patible collections of clusters [D~ '''''Dl''-I-m J, Ui=lsupp / ) l ' 'm  --i c l  N- I ,  
corresponding to the boundary  condit ions q~l(x), x e Z 1 --IN, and rp"(x), 
x e / ,  and the summat ion  in Z 2'' is taken over all nonlong, nonordered  
compatible collections of clusters [ D r "  2,, �9 . .Dk ], Uk=lSUppD2i"ClN--I,  
corresponding to the boundary  conditions q~Z(x), x e Z  1 - I N ,  and qr 
x e L  

In just  the same way we get 

Z 2 ' " Z " '  = Z  2' '  Z " '  w(D2'") "'" w(DT'") w(D~") . .. w(D~") 

The sketch of the proof  is the following. Let ~ 1, "32"  = }23 w(D1) - �9 �9 w(Dk) 
and z z ' " Z  1'' = 5-'. 4 w(D1) - .- w(Dl), where 52 3 = ~1, ,, 522,, and 52 4 = 522. ,, Zl , , .  

We define a sub-sum 525 c 52 3 and a sub-sum ~-'~6 C2 524 and put  one-to- 
one correspondence between 5 2 3  525 and 5 2 4  Z6 and prove that  525 and 
~6  are negligible. 

Fig. 3. 
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A cluster D = [(Ki, i =  1 ..... r); G']  is said to be basic if the set 

) suppDi  u G '  n((Zl-- Iu)  uI)) 
i 1 

is not empty. In Fig. 3 all clusters are basic. 
Let 

U= w(D,) ... w(Dm+k)= w(D~'").., w(D2" ) w(D2") ... w(D~") 

be some term of 52 3. Consider W =  uim=1D~'" U~=l D2" [note that W is 
the set of all clusters of the term w(D1).., w(Dk)] and four subsets of W: 

[D' = [(Ki, i = 1 ..... r); G']  W' ~2., m 

k supp not empty] 
w" = ID"  = [(K,, i =  1,..., r); G']  

m 

((;(.s s u p p D ~ ) u  G ' ) n l i s  not empty]  

= [ D  1= [(K,, i =  1,..., r); G'] W 1 

) ) ] ~1 supp D i w G' n (Z 1 - IN) is not empty 

W 2 = [ D  a = [(Ki, i =  1,..., r); G']  e 2  2' ' '  

((i~_1 suppD~)uG')c~ (Z1 - IN) is not empty]  

Note that the subsets W', W", W ~, and W 2 contain only basic clusters 
and their union contains all basic clusters of the term U. 

Let 

w(D,) ... w(Dt+,) = Aw(D~,') ... w(D)") w(D2,").., w(D~' ") 

be some term of Z 4. Consider W -  U~= l D~'" UT~ 1 D~" [note that W is the 
set of all clusters of the term w(Dl).., w(Dl+,,)]. In just the same way we 
can define four subsets of W. 
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Consider a term U = w ( D I ) . . . w ( D k ) ~ Y '  3 containing only basic 
clusters. By definition, kJ~=lDi can be represented as L)k=~Di= 
(um=l D~)U (L.)~=m+l Dj), where the clusters L)iml D~= W I u  W' and 
U k = m + l  Oj  = m 2 u  W t,, 

From the definition of nonlong clusters and W', W", W 1, and W 2 it 
easily follows that there exists the same term U ' =  w(D1) . . .w (Dk)6Y ,  4 
such that U ~= 1 O~ = (U m= 1 D~) U (U ~= ,, + i D j), where the clusters U i~ 1 Di = 
W l w  W' and U~=m+l D j =  W,,u  W". 

Figure3 shows four collections of clusters, COL~= [D~'",DJ'", 
D~'" / ) l ,  ttq C O L , , =  r / -12 ,  t 1-12, t DE" D~"], COL3 [ D I '  r ~ , , ,  /31,  , F l l ,  tq  ~JL" 4 j ,  LL~5 ~x-" 6 ~ ~ ~ ~L"6 , 4 " 7  ' JL"4 J ,  

COL4[D~'", D2 2' ", D~' ", D~' "]. Two coincident terms U = U' = [I~=1 w(D~) 
belonging to the sums ~2 3 and ~4 are constructed the by union of the 
collections COL1, COL., and COL3, COL4, respectively. 

We see that we easily can put a one-to-one correspondence between 
terms UE:'~-~ 3 and U ' e  Y 4 containing only basic clusters. 

Consider the term 

U= w(D1) " " W(Dk) W(Dk + l) " " w(D,,) ~ ~3 

containing basic clusters D1.--Dk and not basic clusters D k + t - . - D , .  
Now we have two cases: 

1. There exists a term 

U'= w(D1) "" W(Dk) w(Dk + 1)' '"  w(D.) ~ ~ 4  

coinciding with the term U ~ ' ~  3. 

2. There is no term 

. . . . . .  4 
U'= w(D,) w(Dk) w(Dk + l) w (D. )e  

coinciding with the term U e ~  3. 

Let Z 5 be te set of all terms UeS2 3 belonging to the second case. By 
the same way we define the set Z 6 c  ~4. 

It can be easily shown that in the second case the union of supports 
of all clusters contains at least a support of one long cluster (moreover, the 
diameter of this cluster is greater than N -  M). 

Now note that 

' ~ 3  '~3 __ E5 
QI~<Z4 Z4__~6~< Q2 
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Proof of the last inequality almost coincides with the proof of 
Lemma 19 and is omitted (the only difference is the existence of over- 
lapping clusters in Z 5 and Z6). 

Lemma 20, and hence Lemma 18, are proved. 

Let p1 and p2 be two different extreme Gibbs states of the model (1) 
corresponding to the boundary conditions ~0~(x) and ~02(x), respectively. 

T h e o r e m  6. (17) p1 and p2 are singular or coincide. 

Proof of Theorem 5. Let P1 and p2 be two different extreme Gibbs 
states of the model (1) corresponding to the boundary conditions ~ol(x) 
and q~2(x), respectively. According to Lemma 18, P1 and p2 are not 
singular. Therefore, according to Theorem 6, P~ and p2 coincide, which 
contradicts the assumption. Theorem 5 is proved. 

5. GROUND AND GIBBS STATES. THE DENSITY IS RATIONAL 

In this section we generalize the obtained results for all rational values 
of the density. 

Suppose that the value of the external field/~ of the model (1) belongs 
to the interval (#~-, p+) for some number ~ =q/p = [no, nl ..... n~]. 

The notions of the contour and interface contour are defined in 
Definitions 2 and 3. Now we show the validity of the important Lemma 1. 

Proof of Lemma 1 for an arbitrary rational value of the density of the 
ground state. 

1. Suppose that 

( ~ 0 ' ( x ) -  ~o. 0 ....... ( x ) )  = 0 
x ~ s u p p  K 

This implies that the perturbation (p(x) is obtained by shifting of some 
particles only. 

By making use of Theorem 2 it can be easily shown that in this case 
the inequality 

H(~o'(x) ) - H(q) ,o(X) ) >~ t [supp PB[ 

is fulfilled with 

t= ( U ( p -  1)+ U(p + 1 ) -  2U(p) )O 

O= ( L - d o p ) : 2 L ( d o +  1)p 

822/72/3-4-14 
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2. Suppose that 

y~ ~0'(x)-~0.0 ....... ( x ) ) ~ 0  
x G s u p p  K 

Let the density of the configuration r x e supp K, be ~: and the reci- 
procal of the density be r/. Let r/= It/i,..., qs], where qs is not necessarily 
integer. By assumption there exists an index k, 1 ~< k ~< s, such that n~ = q~ 
for i = 0,..., k - 1 and nk r ~/k. In this case we divide the proof into six cases. 

Case 2a. nk + l <<, rlk. 

Case 2b. n k + l - - e < r l k < n k + l .  

Case 2c. nk<~/k~<nk+l - -e .  

Case 2d. q~ <~ n g - 1 .  

Case 2e. n k - - l < r l ~ < n k - - l + 6 .  

Case 2 f  n k - - l + f < ~ r / k < n  g. 

The last part of the proof is analogous to the proof of Lemma 1 for the 
special case of x = q/p = l/no and will be omitted. 

Now we can generalize all obtained results for an arbitrary rational 
value of the density. Thus, Theorem 4 holds for all rational densities; 
Theorem 3 is proved. 

6. CONCLUSIONS 

Thus we have proved that model (1) has a unique Gibbs state. 

T h e o r e m  7.(z) Every Gibbs state of the model (1), P, is translation 
invariant. 

Note that our proof of Theorem 3 imposes on the value of the inverse 
temperature a very inconvenient condition, f l>  tier [see (98)], where 

lim /~r ~ (104) 

where p is the period of the special ground states. 
This condition is unnatural. In fact, consider two values of the external 

field, say #1 and #2, with corresponding reciprocal densities of the special 
ground states ~:1 = no and 1s 2 = n o --}- l/n1 and critical temperatures flit and 
fl~r. Suppose that n l -~  ~ .  In this case we are faced with an unnatural 
situation: fl~r ~ ~ while ~:2 -~ Xl and/3] r is fixed. 

The reason for this situation is the following fact: the Peierls constant 
t (see Lemma 1) for the special ground state in this case tends to zero when 
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n~ --+ oo. Correctness of the last fact can be easily shown directly from the 
construction of the special ground state. Indeed, 

~O(no, na) = ... 0... 010... O1 ... 0 . . .010 . . .010 . . .01  ... 0... O1 

n 0 + 1 n o no  no  + 1 n o no 

n l  - -  1 t i m e s  n l  1 t i m e s  

x 0... 010... O1 ... 0...01... 

no  + 1 no  no  

n l  - -  1 t i m e s  

Let us consider the following perturbation of the ~O(no, nl): 

__J~~ nl) . . . .  0 . . .010. . .01 ... 0 . . .010 . . .010 . . .010 . . .01  ... 0... O1 

no  + 1 no  no no no  + 1 no no  

n 1 --  1 t i m e s  n I - -  2 t i m e s  

x 0. . .010. . .01 ... 0...01... 

n o + 1 n O no  

n l  - -  1 t i m e s  

which is obtained from the configuration ~0(no, nl) by interchanging two 
blocks (these blocks are noted above by an overbar). 

Now note that 

AH= H(~o'(no, nl)) - H(q)(no, ni)) < const(nonl) 2-~ 

and therefore AH--+O when nl -+ oo. 
By modification of this construction we can obtain an example where 

there exists an unbounded perturbation with bounded loss of energy when 
/ 7 1 - - + o o .  

Inequality (104) does not allow us to generalize Theorem 3 for the 
irrational values of the density. 

But we think that Theorem 3 is valid for irrational values of the 
density, too. To establish this fact one needs to improve the proof of 
Theorem 3 (actually, to improve the definition of a precontour). 
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